Experimental Progress on Quantum Computing with Atomic Qubits

Xiang Zhang

January 26, 2018

< □ > < @ > < 注 > < 注 > ... 注

Outline

1 Trapped-ion System

- 2 Experimental Violation of Quantum Contextuality
- 3 Symmetry Operations with an Embedding Quantum Simulator
 - 4 Quantum Simulation of Quantum Field Theory

5 Conclusion

Trapped Ions: Promising Architecture¹

Scalable and universal trapped-ions quantum computer

- Long coherence time: up to seconds or even hours
- Perfect quantum operation: fidelities of gate and measurement > 99%
- Local scalibility: shuttling or addressing > 10 ions in one trap
- Quantum networks: remotely entangled ion chains through photons

Ion Trap

- Captures and confines ions in a vacuum system
- Precision measurement: most accurate atomic clock, gyroscope
- Ionization and control: mass spectrometer, vacuum pump/gauge
- Penning trap: an axial magnetic ring and two endcaps
- Paul trap: four RF electrodes and two DC needles

Perfect pure quantum system

- Isolated system with ultra-high vaccum ($< 10^{-11}$ torr)
- Atomic levels and well designed harmonic trapping potential

• Universal rich set of quantum operations

Ion Trap

- Captures and confines ions in a vacuum system
- Precision measurement: most accurate atomic clock, gyroscope
- Ionization and control: mass spectrometer, vacuum pump/gauge
- Penning trap: an axial magnetic ring and two endcaps
- Paul trap: four RF electrodes and two DC needles

Perfect pure quantum system

- Isolated system with ultra-high vaccum ($< 10^{-11}$ torr)
- Atomic levels and well designed harmonic trapping potential
- Universal rich set of quantum operations

4-rod Trap

Trap design

- 4 rods: parabolic pseudopotential formed by rotating RF field
- 2 needles: static Coulomb potential
- 2 extra electrodes: compensate background electric field
- lons arranged into a linear string

996

- B

4-rod Trap

Calculating trap's X-Y and Z potential with BEM method

▲□▶ ▲□▶ ▲ 三▶ ▲ 三▶ 三三 - のへぐ

New Traps

New trap designs

System Construction

◆□▶ ◆□▶ ◆臣▶ ◆臣▶ 臣 のへ⊙

Trapped-ion System

9 / 44

Collision Estimation and UHV Preparation

Trapped-ion System

10 / 44

Ionization and Doppler Cooling

◆□▶ ◆□▶ ◆三▶ ◆三▶ ○三 の々で

State Detection and Initialization

Trapped-ion System 1

12 / 44

Microwave Manipulation

200

3

Pulse Laser Raman Transition

æ

Control System: Hardware

◆□▶ ◆□▶ ◆三▶ ◆三▶ 三三 のへで

Trapped-ion System

15 / 44

Control System: Software

Outline

1 Trapped-ion System

2 Experimental Violation of Quantum Contextuality

3 Symmetry Operations with an Embedding Quantum Simulator

4 Quantum Simulation of Quantum Field Theory

5 Conclusion

▲□▶ ▲□▶ ▲目▶ ▲目▶ 目 のへで

Non-Contextuality

Definition

Observables' probability distribution are independent of measurement.

Example $|1\rangle$ $|2\rangle$ $|\Psi\rangle$

 $|3\rangle$

▲□▶ ▲□▶ ▲□▶ ▲□▶ □ のQで

Pentagram Inequality

Hidden Variable Theory

Let A_i be observables taking values ± 1 , $\langle \cdot
angle$ denotes average value. Then

$$\langle A_1 A_2 \rangle + \langle A_2 A_3 \rangle + \langle A_3 A_4 \rangle + \langle A_4 A_5 \rangle + \langle A_5 A_1 \rangle \ge -3.$$

Quantum Mechanics

Let $A_i = I - 2 |v_i\rangle \langle v_i|$ be observables on state $|\Psi\rangle$. Then $v(A_i) = \pm 1$, and

 $\langle A_1 A_2 \rangle + \langle A_2 A_3 \rangle + \langle A_3 A_4 \rangle + \langle A_4 A_5 \rangle + \langle A_5 A_1 \rangle = 5 - 4\sqrt{5} \approx -3.944.$

Experimental Demonstration

 $d=3\,$ system is the most fundamental system shows contextuality.

Previous Work

- *d* ≥ 4. Nature 460, 494 (2009).
- d = 3. Nature **474**, 490 (2011), PRL **109**,150401 (2012).

Recently Experimental Demonstration

- d = 3. PRL **110**, 070401 (2013)^{*a*}.
- state-independent Kochen-Specker inequality
- with a single trapped ion (indivisible system, no entanglement)

▲□▶ ▲□▶ ▲□▶ ▲□▶ □ のQで

• close detection efficiency loophole

^aX. Zhang, et al., Phys. Rev. Lett. 110:070401 (2013)

Experimental Demonstration

 $d=3\,$ system is the most fundamental system shows contextuality.

Previous Work

- *d* ≥ 4. Nature 460, 494 (2009).
- d = 3. Nature **474**, 490 (2011), PRL **109**,150401 (2012).

Recently Experimental Demonstration

- d = 3. PRL **110**, 070401 (2013)^a.
- state-independent Kochen-Specker inequality
- with a single trapped ion (indivisible system, no entanglement)
- close detection efficiency loophole

^aX. Zhang, et al., Phys. Rev. Lett. 110:070401 (2013)

State-independent Inequality²

Hidden Variable Theory

Let A_i $(i = 1, \dots, 13)$ be observables taking values ± 1 . Then

$$\langle \chi_{13} \rangle \quad := \quad \sum_{i \in V} \mu_i \langle A_i \rangle - \sum_{(i,j) \in E} \mu_{ij} \langle A_i A_j \rangle - \sum_{(i,j,k) \in C} \mu_{ijk} \langle A_i A_j A_k \rangle \le 25.$$

Quantum Mechanics

Let $|v_i\rangle$ be basis vectors, $A_i=I-2\,|v_i\rangle\,\langle v_i|$ be observables. Then for any initial state $|\Psi\rangle$,

$$\langle \chi_{13} \rangle = \frac{83}{3} \approx 27.67.$$

Observables and Compatibility Relations

Observables and Compatibility Relations

Measurement Scheme

◆□▶ ◆□▶ ◆三▶ ◆三▶ 三三 - のへで

The Experimental Violation

$$\langle \chi_{13} \rangle = 27.38 \pm 0.21$$

▲□▶ ▲□▶ ▲□▶ ▲□▶ ■ ●の00

Summary

Quantum Contextuality is rooted in the fundamental structure of QM.

Observed Experimental Violation

- d = 3. PRL **110**, 070401 (2013).
- state-independent Kochen-Specker inequality
- with a single trapped ion (indivisible system, no entanglement)
- close detection efficiency loophole

Outlook

- Application: "true" random number generator^a
- Loophole-free: simultaneously measurement

^aU. Mark, X. Zhang, et al., Scientific Reports, 3:1627 (2013)

Summary

Quantum Contextuality is rooted in the fundamental structure of QM.

Observed Experimental Violation

- d = 3. PRL **110**, 070401 (2013).
- state-independent Kochen-Specker inequality
- with a single trapped ion (indivisible system, no entanglement)
- close detection efficiency loophole

Outlook

- Application: "true" random number generator^a
- Loophole-free: simultaneously measurement

^aU. Mark, X. Zhang, et al., Scientific Reports, 3:1627 (2013)

Outline

- 1 Trapped-ion System
- 2 Experimental Violation of Quantum Contextuality

3 Symmetry Operations with an Embedding Quantum Simulator

4 Quantum Simulation of Quantum Field Theory

5 Conclusion

▲□▶ ▲□▶ ▲目▶ ▲目▶ 目 のへで

Majorana Particle³

- Majorana particle is its own antiparticle
- Whether neutrinos are Dirac or Majorana particles still remains open

Majorana equation

$$\imath \hbar \gamma^{\mu} \partial_{\mu} \psi = m c \psi_c$$

 γ^{μ} are Dirac matrices, ψ_{c} is the charge conjugate of the spinor $\psi.$

- Relativistic wave equation for fermions derived from first principles
- Preserves helicity and has no stationary solutions
- Relativistic quantum effects such as Zitterbewegung
- Time reversal and charge conjugation symmetries

"Unphysical" Mapping

Majorana equation for $\left(1+1\right)$ dimensions

$$i\hbar\partial_t\psi = c\hat{\sigma}_x\hat{p}_x\psi - imc^2\hat{\sigma}_y\psi^*$$

with "unphysical" operation mapping to enlarged space

$$\psi = \begin{pmatrix} \psi_1 \\ \psi_2 \end{pmatrix} \in \mathbb{C}_2 \to \Psi = \begin{pmatrix} \psi_1^r \\ \psi_2^r \\ \psi_1^i \\ \psi_2^i \end{pmatrix} \in \mathbb{R}_4$$
$$\psi = M\Psi = \begin{pmatrix} 1 & 0 & i & 0 \\ 0 & 1 & 0 & i \end{pmatrix} \Psi$$

becomes a (3+1)-dimensional Dirac equation

$$i\hbar\partial_t\Psi = [\hat{p}_x c(\mathbf{1}\otimes\sigma_x) - mc^2(\sigma_x\otimes\sigma_y)]\Psi$$

・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・

Embedding Quantum Simulator⁴

⁴X. Zhang, et al., Nature Communications, 6:7917 (2015) → < (□) → (□)

Microwave Raman Transition

$$H_{\text{Majorana}} = \hat{p}_x c(\mathbf{1} \otimes \sigma_x) - mc^2(\sigma_x \otimes \sigma_y) \to \underbrace{pc(\sigma_{12}^x + \sigma_{34}^x)}_{H_1} + \underbrace{mc^2(\sigma_{23}^y - \sigma_{14}^y)}_{H_2}$$

Microwave Raman Transition

$$H_{\text{Majorana}} = \hat{p}_x c(\mathbf{1} \otimes \sigma_x) - mc^2(\sigma_x \otimes \sigma_y) \to \underbrace{pc(\sigma_{12}^x + \sigma_{34}^x)}_{H_1} + \underbrace{mc^2(\sigma_{23}^y - \sigma_{14}^y)}_{H_2}$$

▲□▶ ▲圖▶ ▲ 臣▶ ▲ 臣▶ ― 臣 … のへぐ

Microwave Raman Transition

$$H_{\text{Majorana}} = \hat{p}_x c(\mathbf{1} \otimes \sigma_x) - mc^2(\sigma_x \otimes \sigma_y) \to \underbrace{pc(\sigma_{12}^x + \sigma_{34}^x)}_{H_1} + \underbrace{mc^2(\sigma_{23}^y - \sigma_{14}^y)}_{H_2}$$

Microwave Raman Transition

$$H_{\text{Majorana}} = \hat{p}_x c(\mathbf{1} \otimes \sigma_x) - mc^2(\sigma_x \otimes \sigma_y) \to \underbrace{pc(\sigma_{12}^x + \sigma_{34}^x)}_{H_1} + \underbrace{mc^2(\sigma_{23}^y - \sigma_{14}^y)}_{H_2}$$

Global Phase Effect

For parallel initial states with different global phase

$$\psi_{\theta}(t=0)\rangle := e^{i\theta} \begin{pmatrix} 1\\ 0 \end{pmatrix} \otimes |p\rangle$$

the fidelity defined as $F(t) = |\langle \psi_{\theta}(t) | \psi_0(t) \rangle|^2$ is not conserved.

▲□ ▶ ▲ 臣 ▶ ▲ 臣 ▶ ○ 臣 ○ のへで

Global Phase Effect

For parallel initial states with different global phase

$$\psi_{\theta}(t=0)\rangle := e^{i\theta} \begin{pmatrix} 1\\ 0 \end{pmatrix} \otimes |p\rangle$$

the fidelity defined as $F(t) = |\langle \psi_{\theta}(t) | \psi_0(t) \rangle|^2$ is not conserved.

▲□ → ▲ 田 → ▲ 田 → ▲ 田 → ▲ □ →

Global Phase Effect

For parallel initial states with different global phase

$$\psi_{\theta}(t=0)\rangle := e^{i\theta} \begin{pmatrix} 1\\ 0 \end{pmatrix} \otimes |p\rangle$$

the fidelity defined as $F(t) = |\langle \psi_{\theta}(t) | \psi_0(t) \rangle|^2$ is not conserved.

▲□ ▶ ▲ 臣 ▶ ▲ 臣 ▶ ○ 臣 ○ のへで

Global Phase Effect

For parallel initial states with different global phase

$$\psi_{\theta}(t=0)\rangle := e^{i\theta} \begin{pmatrix} 1\\ 0 \end{pmatrix} \otimes |p\rangle$$

the fidelity defined as $F(t) = |\langle \psi_{\theta}(t) | \psi_0(t) \rangle|^2$ is not conserved.

▲□ ▲ □ ▲ □ ▲ □ ● ● ● ●

Global Phase Effect

For parallel initial states with different global phase

$$\psi_{\theta}(t=0)\rangle := e^{i\theta} \begin{pmatrix} 1\\ 0 \end{pmatrix} \otimes |p\rangle$$

the fidelity defined as $F(t) = |\langle \psi_{\theta}(t) | \psi_0(t) \rangle|^2$ is not conserved.

▲□ ▶ ▲ 臣 ▶ ▲ 臣 ▶ ○ 臣 ○ のへで

Non-unitary Dynamics

◆□▶ ◆□▶ ◆三▶ ◆三▶ 三三 - のへで

Symmetry Operations

Apply symmetry operations at midpoint, with initial wave packet

$$\psi(x,t=0) = (4\pi)^{-1/4} e^{-x^2/8} \frac{1}{\sqrt{2}} {\binom{1}{1}} e^{ip_0 x/\hbar}$$

э

Technique Application: Quantum Chemistry⁵

Ground energy of ${\rm HeH^+}$ calculated by Quantum Unitary Coupled Cluster

⁵Y. C. Shen, X. Zhang, et al., Phys. Rev. A. 95:020501 (2017) → < ≡ → < ≡ → ○ < ?

▲□▶ ▲□▶ ▲□▶ ▲□▶ □ のQで

Summary

Realization of non-unitary dynamics and symmetry operations in a trapped-ion quantum simulator.

Observed dynamics

- Global phase effect
- Orthogonality non-preservation
- Momentum Zitterbewegung
- Time reversal and charge conjugation

Outlook

- Test discrete symmetry
- Anti-unitary operations with real momentum operator

Summary

Realization of non-unitary dynamics and symmetry operations in a trapped-ion quantum simulator.

Observed dynamics

- Global phase effect
- Orthogonality non-preservation
- Momentum Zitterbewegung
- Time reversal and charge conjugation

Outlook

- Test discrete symmetry
- Anti-unitary operations with real momentum operator

Outline

- 1 Trapped-ion System
- 2 Experimental Violation of Quantum Contextuality
- Symmetry Operations with an Embedding Quantum Simulator
- Quantum Simulation of Quantum Field Theory

5 Conclusion

◆□▶ ◆□▶ ◆目▶ ◆目▶ ▲□ ◆ ��や

Simplified QFT Model⁶

(1+1) QFT model

- Scalar fermions and bosons
- Fermion and anti-fermions interacting through bosonic field modes

Key features

- Fermion self-interaction process
- Particle creation and annihilation
- Non-perturbative regimes beyond Feynman diagrams

Simplified QFT Model⁶

(1+1) QFT model

- Scalar fermions and bosons
- Fermion and anti-fermions interacting through bosonic field modes

Key features

- Fermion self-interaction process
- Particle creation and annihilation
- Non-perturbative regimes beyond Feynman diagrams

⁶J. Casanova, et al., Phys. Rev. Lett., 107, 260501 (2011)) *«♂*→ *«*≣→ *«*≣→ *"*≣→ *"*≡ ∽ *«*⊘

Interaction Hamiltonian

$$H = g \int dx \psi^{\dagger}(0, x) \psi(0, x) A(0, x)$$

$$\doteq g(t) (e^{i\delta t} b_{in}^{\dagger} d_{in}^{\dagger} a_0 + e^{-i(2\omega_0 + \delta)t} d_{in} b_{in} a_0)$$

$$+ g_1 e^{-i\omega_0 t} (b_{in}^{\dagger} b_{in} a_0 + d_{in} d_{in}^{\dagger} a_0) + \text{H.c.}$$

where $\delta = \omega_f + \omega_{\overline{f}} - \omega_0$ and interaction strength $g(t) = g_2 e^{-(t-T/2)^2/(2\sigma_t^2)}$.

Jordan-Wigner mapping

$$\begin{aligned} b_{in}^{\dagger} &= I \otimes \sigma^{+}, b_{in} = I \otimes \sigma^{-}, d_{in}^{\dagger} = \sigma^{+} \otimes \sigma_{z}, d_{in} = \sigma^{-} \otimes \sigma_{z} \\ H_{I} &= g_{1}(\left|0_{f}0_{\bar{f}}\right\rangle \left\langle 0_{f}0_{\bar{f}}\right| + 2\left|1_{f}0_{\bar{f}}\right\rangle \left\langle 1_{f}0_{\bar{f}}\right| + \left|1_{f}1_{\bar{f}}\right\rangle \left\langle 1_{f}1_{\bar{f}}\right|) \hat{a}_{0}e^{-i\omega_{0}t} \\ &- g(t)(\left|0_{f}0_{\bar{f}}\right\rangle \left\langle 1_{f}1_{\bar{f}}\right| \hat{a}_{0}^{\dagger}e^{-i\delta t} + \left|0_{f}0_{\bar{f}}\right\rangle \left\langle 1_{f}1_{\bar{f}}\right| \hat{a}_{0}e^{-i(2\omega_{0}+\delta)t}) + \text{H.c.} \end{aligned}$$

Experimental Diagram

⁷X. Zhang, et al., Nature Communications, 9:135 (2018)

Fermion Self-interaction

- Experiment parameter: $g_1=0.15\omega_0, g_2=0, \sigma_t=3/\omega_0$
- Initial state $|1_f 0_{\bar{f}}, 0\rangle$: one fermion state with no bosons
- Self-interaction dynamics: $\left|1_{f}0_{\bar{f}},n
 ight
 angle\leftrightarrow\left|1_{f}0_{\bar{f}},n\pm1
 ight
 angle$

SAC

Creation and Annihilation

- Experiment parameter: $g_1=0.01\omega_0, g_2=0.21\omega_0, \sigma_t=3/\omega_0$
- Initial state $|1_f 1_{\bar{f}}, 0\rangle$: fermion and antifermion state with no bosons
- Creation and annihilation dynamics: $\left|1_{f}1_{\bar{f}},0
 ight
 angle\leftrightarrow\left|0_{f}0_{\bar{f}},1
 ight
 angle$

Non-perturbative Regimes

- Experiment parameter: $g_1=0.1\omega_0, g_2=\omega_0, \sigma_t=4/\omega_0$
- Initial state $|1_f 1_{\bar{f}}, 0\rangle$: fermion and antifermion state with no bosons
- Strong interaction coupling $g_2 \ge \omega_0$
- Non-perturbative dynamics can't be calculated with Feynman diagram

Summary

The first simulation of quantum field theory model with a trapped-ion quantum simulator.

Observed dynamics

- Fermion self-interaction process
- Particle creation and annihilation
- Non-perturbative regimes beyond Feynman diagrams

Outlook

- Extension to many field modes with ion chains
- Open quantum system Markov process
- 10 ions and 5 phonons/ion with dimension of $2^{33} > 32 {
 m bit}$ PC

▲□▶ ▲□▶ ▲□▶ ▲□▶ □ のQで

Summary

The first simulation of quantum field theory model with a trapped-ion quantum simulator.

Observed dynamics

- Fermion self-interaction process
- Particle creation and annihilation
- Non-perturbative regimes beyond Feynman diagrams

Outlook

- Extension to many field modes with ion chains
- Open quantum system Markov process
- 10 ions and 5 phonons/ion with dimension of $2^{33} > 32 \mathrm{bit}$ PC

Outline

- 1 Trapped-ion System
- 2 Experimental Violation of Quantum Contextuality
- Symmetry Operations with an Embedding Quantum Simulator
 - 4 Quantum Simulation of Quantum Field Theory

Conclusion

44 / 44

Summary

Conclusion

- \bullet Build a $^{171}\mathrm{Yb^{+}}$ trapped-ion system
- Implement a diverse set of quantum operations
- Experimental violation of quantum contextuality
- Quantum simulation of symmetry operations and quantum field theory

Outlook

- Quantum coherent controllability of $5\sim 10~{\rm qubits}$
- Loophole-free quantum contextuality verification with Ca/Ba ions
- Anti-unitary operations with real momentum operator
- Extended quantum field theory simulation with more phonon modes

▲□▶ ▲□▶ ▲□▶ ▲□▶ □ のQで

Summary

Conclusion

- \bullet Build a $^{171}\mathrm{Yb^{+}}$ trapped-ion system
- Implement a diverse set of quantum operations
- Experimental violation of quantum contextuality
- Quantum simulation of symmetry operations and quantum field theory

Outlook

- Quantum coherent controllability of $5\sim 10~{\rm qubits}$
- Loophole-free quantum contextuality verification with Ca/Ba ions
- Anti-unitary operations with real momentum operator
- Extended quantum field theory simulation with more phonon modes