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Trapped lons: Promising Architecture!

Scalable and universal trapped-ions quantum computer

@ Long coherence time: up to seconds or even hours

@ Perfect quantum operation: fidelities of gate and measurement > 99%
@ Local scalibility: shuttling or addressing > 10 ions in one trap
°

Quantum networks: remotely entangled ion chains through photons
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Trapped-ion System

Captures and confines ions in a vacuum system
Precision measurement: most accurate atomic clock, gyroscope
lonization and control: mass spectrometer, vacuum pump/gauge

Penning trap: an axial magnetic ring and two endcaps

Paul trap: four RF electrodes and two DC needles



Trapped-ion System

Captures and confines ions in a vacuum system
Precision measurement: most accurate atomic clock, gyroscope
lonization and control: mass spectrometer, vacuum pump/gauge

Penning trap: an axial magnetic ring and two endcaps

Paul trap: four RF electrodes and two DC needles

Perfect pure quantum system

e Isolated system with ultra-high vaccum (< 107! torr)
@ Atomic levels and well designed harmonic trapping potential

@ Universal rich set of quantum operations




Trapped-ion System

4-rod Trap

Trap design

4 rods: parabolic pseudopotential formed by rotating RF field
@ 2 needles: static Coulomb potential

@ 2 extra electrodes: compensate background electric field

°

lons arranged into a linear string
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4-rod Trap

Calculating trap’s X-Y and Z potential with BEM method




New Traps

Trapped-ion System

New trap designs
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System Construction
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Collision Estimation and UHV Preparation
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Trapped-ion System

lonization and Doppler Cooling
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State Detection and Initialization
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Microwave Manipulation
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Trapped-ion System

Pulse Laser Raman Transition

-1
1
0 1 2 105 106 107 1
Ramant M‘{ |
< \
Au;
Raman2 }»54 ‘ . ‘
0 1 2 105 106 107
{n—1)
optical frequency 4. 1)
State Red Sideband Carrier Blue Sideband
m1F N v ;
oo ' 2
4
b
03 &1
iy
- o

0.5 L ol N

v Ok

N
I
B2

n[d

cwe semcon

220

Frequency (MHz)




Trapped-ion System

Control System: Hardware
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Control System: Software
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Non-Contextuality

Definition
Observables' probability distribution are independent of measurement.

Example

1) 1)
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2) Do~ 12)
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Pentagram Inequality

Hidden Variable Theory

Let A; be observables taking values £1, (-) denotes average value. Then

(A142) + (A243) + (A3A4) + (As45) + (A5A1) > 3.

Quantum Mechanics

Let A; = I —2|v;) (v;| be observables on state |¥). Then v(4;) = £1, and

<A1A2> -+ <A2A3> -+ <A3A4> + <A4A5> -+ <A5A1> =5— 4\/5 ~ —3.944.

v




Experimental Violation of Quantum Contextuality 19 / 44

Experimental Demonstration

d = 3 system is the most fundamental system shows contextuality.

Previous Work
e d > 4. Nature 460, 494 (2009).
e d = 3. Nature 474, 490 (2011), PRL 109,150401 (2012).
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Experimental Demonstration

d = 3 system is the most fundamental system shows contextuality.

e d > 4. Nature 460, 494 (2009).
e d = 3. Nature 474, 490 (2011), PRL 109,150401 (2012).

vy

Recently Experimental Demonstration

e d =3. PRL 110, 070401 (2013)2.
@ state-independent Kochen-Specker inequality
@ with a single trapped ion (indivisible system, no entanglement)

@ close detection efficiency loophole

?X. Zhang, et al., Phys. Rev. Lett. 110:070401 (2013)

A\




Experimental Violation of Quantum Contextuality

State-independent Inequality?

Hidden Variable Theory
Let A; (i =1,---,13) be observables taking values +1. Then

(x13) = Zﬂz i) Z Mgy (Al AL — Z 0 (A;A;AL) < 25.

i€V (i,5)EE (4,5,k)€C

Quantum Mechanics

Let |v;) be basis vectors, A; = I — 2 |v;) (v;| be observables. Then for any
initial state |¥),

83
<X13> = ? ~ 27.67.

2A. Cabello, et al., Phys. Rev. Lett. 109:250402 (2012)
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Observables and Compatibility Relations
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Observables and Compatibility Relations
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Measurement Scheme
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Experimental Violation of Quantum Contextuality

The Experimental Violation

Classical < Quantum
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Summary

Quantum Contextuality is rooted in the fundamental structure of QM.

Observed Experimental Violation

o d=3. PRL 110, 070401 (2013).

@ state-independent Kochen-Specker inequality

@ with a single trapped ion (indivisible system, no entanglement)

@ close detection efficiency loophole
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Summary

Quantum Contextuality is rooted in the fundamental structure of QM.

Observed Experimental Violation

o d=3. PRL 110, 070401 (2013).

state-independent Kochen-Specker inequality

°
@ with a single trapped ion (indivisible system, no entanglement)
°

close detection efficiency loophole

Application: “true” random number generator?

Loophole-free: simultaneously measurement

?U. Mark, X. Zhang, et al., Scientific Reports, 3:1627 (2013)
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Majorana Particle3

@ Majorana particle is its own antiparticle

@ Whether neutrinos are Dirac or Majorana particles still remains open

Majorana equation

0,9 = mey.

~# are Dirac matrices, . is the charge conjugate of the spinor .

Relativistic wave equation for fermions derived from first principles
Preserves helicity and has no stationary solutions

Relativistic quantum effects such as Zitterbewegung

Time reversal and charge conjugation symmetries

3). Casanova, et al., Phys. Rev. X, 1:021018 (2011)
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“Unphysical” Mapping

Majorana equation for (1 + 1) dimensions
thOp) = Copprth — 1vmc oy

with “unphysical” operation mapping to enlarged space

"
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becomes a (3 + 1)-dimensional Dirac equation

1hO ¥ = [prc(l ® o) — mc (o, ® 0,)| ¥
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Embedding Quantum Simulator*

Majorana Dynamics PY(t) = MP(t)
o ;Tir'.lE.REV sal -
- e MY
b .(!arge‘&njugatiqn '. . ‘ 4w J
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Computer
Generated
Sequence

*X. Zhang, et al., Nature Communications, 6:7917 (2015)
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Microwave Raman Transition

HMajorana = ﬁxc(1®o'x) —mc2 (0x®0y) — pC(O’%2 + U§4) + m02(0-3213 - 0-21/4)
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Microwave Raman Transition

HMajorana = ﬁxc(1®o'x) —mc2 (0x®0y) — pC(O’%2 + U§4) + m02(0-3213 - 0-21/4)

Hy Ho>
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Microwave Raman Transition

HMajorana = ﬁxc(1®o'x) —mc2 (0x®0y) — pC(O’%2 + U§4) + m02(0-3213 - 0-21/4)
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Microwave Raman Transition

HMajorana = ﬁxc(1®o'x) —mc2 (0x®0y) — pC(O’%2 + U§4) + m02(0-3213 - 0-21/4)

Hy Ho>
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Global Phase Effect

For parallel initial states with different global phase

e =0 =) )

the fidelity defined as F'(t) = | (p(t) | 10(t)) | is not conserved.
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Global Phase Effect

For parallel initial states with different global phase

e =0 =) )

the fidelity defined as F'(t) = | (p(t) | 10(t)) | is not conserved.




Symmetry Operations with an Embedding Quantum Simulator 30 / 44

Global Phase Effect

For parallel initial states with different global phase

e =0 =) )

the fidelity defined as F'(t) = | (p(t) | 10(t)) | is not conserved.
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Global Phase Effect

For parallel initial states with different global phase

e =0 =) )

the fidelity defined as F'(t) = | (p(t) | 10(t)) | is not conserved.
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Global Phase Effect

For parallel initial states with different global phase

e =0 =) )

the fidelity defined as F'(t) = | (p(t) | 10(t)) | is not conserved.
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Symmetry Operations with an Embedding Quantum Simulator

Non-unitary Dynamics
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Symmetry Operations

Apply symmetry operations at midpoint, with initial wave packet
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Technique Application: Quantum Chemistry®

Ground energy of HeH™ calculated by Quantum Unitary Coupled Cluster

y Unieary Coupied Cluster computer *‘\‘
yp
— e o
H 4+ —
Gownd) E11) 612 182

e of H

Tnput: H

updated parameters ¢1, 2 ..

%Y. C. Shen, X. Zhang, et al., Phys. Rev. A. 95:020501 (2017)
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Summary

Realization of non-unitary dynamics and symmetry operations in a
trapped-ion quantum simulator.

Observed dynamics

Global phase effect

@ Orthogonality non-preservation
o Momentum Zitterbewegung
o

Time reversal and charge conjugation
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Summary

Realization of non-unitary dynamics and symmetry operations in a
trapped-ion quantum simulator.

Observed dynamics

Global phase effect

@ Orthogonality non-preservation
o Momentum Zitterbewegung
o

Time reversal and charge conjugation

| \

Outlook
@ Test discrete symmetry

@ Anti-unitary operations with real momentum operator
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Quantum Simulation of Quantum Field Theory

Simplified QFT Model®

(1+1) QFT model
@ Scalar fermions and bosons

@ Fermion and anti-fermions interacting through bosonic field modes

®J. Casanova, et al., Phys. Rev. Lett., 107, 260501 (2011)



Quantum Simulation of Quantum Field Theory

Simplified QFT Model®

bl
ab
+ =+
df

(1+1) QFT model

@ Scalar fermions and bosons

@ Fermion and anti-fermions interacting through bosonic field modes

Key features

@ Fermion self-interaction process
@ Particle creation and annihilation

@ Non-perturbative regimes beyond Feynman diagrams

®J. Casanova, et al., Phys. Rev. Lett., 107, 260501 (2011)
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Interaction Hamiltonian

H=yg / daiT(0, )0, ) A(0, 2)
= g(t) ("] dl ag+ e Pt biag)

+ gle_lwot(bjnbmao + dindjnao) + H.c.

where § = wy + w7 —wo and interaction strength g(t) = goe—(t=T/2)?/(20%)

Jordan-Wigner mapping

bjn :I®O'+,bin :I®O'_,d1-n:O'+®O'z,din:a'_®o'z
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Experimental Diagram
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Fermion Self-interaction

@ Experiment parameter: g; = 0.15wq, g2 = 0,0, = 3/wp
@ Initial state |1f0f, 0>: one fermion state with no bosons
o Self-interaction dynamics: [1;07,n) <> |1;07,n 4 1)
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Creation and Annihilation

e Experiment parameter: g; = 0.01lwyg, g2 = 0.21wg, 0y = 3/wp
o Initial state |1f1f, 0>: fermion and antifermion state with no bosons

@ Creation and annihilation dynamics: ‘1f1f,0> — ‘Of()f, 1>

.
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o vl
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Non-perturbative Regimes

Experiment parameter: g1 = 0.1wyg, g2 = wo, 0y = 4/wo

o
o Initial state |1f1f, 0>: fermion and antifermion state with no bosons
@ Strong interaction coupling g2 > wy
o Non-perturbative dynamics can't be calculated with Feynman diagram
12
£
= (@3a0)
05}
ot 10

0 5 10 15 20 25 30
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Summary

The first simulation of quantum field theory model with a trapped-ion
quantum simulator.

Observed dynamics

@ Fermion self-interaction process
@ Particle creation and annihilation

@ Non-perturbative regimes beyond Feynman diagrams
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Summary

The first simulation of quantum field theory model with a trapped-ion
quantum simulator.

Observed dynamics

@ Fermion self-interaction process
@ Particle creation and annihilation

@ Non-perturbative regimes beyond Feynman diagrams

Extension to many field modes with ion chains

Open quantum system Markov process
10 ions and 5 phonons/ion with dimension of 233 > 32bit PC
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Summary

Conclusion

Build a '"'Yb™ trapped-ion system

@ Implement a diverse set of quantum operations
@ Experimental violation of quantum contextuality
°

Quantum simulation of symmetry operations and quantum field theory

W
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Summary

Conclusion

(]

Build a '"'Yb™ trapped-ion system
Implement a diverse set of quantum operations

Experimental violation of quantum contextuality

Quantum simulation of symmetry operations and quantum field theory

v

@ Quantum coherent controllability of 5 ~ 10 qubits

@ Loophole-free quantum contextuality verification with Ca/Ba ions
@ Anti-unitary operations with real momentum operator
o

Extended quantum field theory simulation with more phonon modes

A\
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